Comb	ined Graduate Level Examination	on (Tier-II), 2018

Section	Stat	tie	tic

 $\textbf{Q.1} \quad \text{The prices } (\text{in} \overline{\textbf{x}}) \text{ of different yarns } (\text{per } kg) \text{ in two consecutive years are as follows.}$

Commodity	Silk	Cotton	Jute	Rayon
Price (in 2016)	600	700	400	300
Price (in	700	600	480	270

By simple aggregative method, the net price changes in % is:

Ans 1. net increase of 2.5% in price.

× 2. net increase of 2% in price.

X 3. net decrease of 2% in price.

X 4. net decrease of 2.5% in price.

Q.2 The average working hours per month of the staff aged over 50 years in a factory were 160 and that of the staff aged under 50 years were 210. The mean working hour per month of all the staff was 200. The ratio of the number of the staff aged over 50 to that of the staff aged under 50 is:

Ans X 1. 3:1

X 2. 2:1 X 3. 1:3

 $^{\mathbf{Q.3}}$ The 4^{th} decile for the given data is:

X	f	
0	1	
1	9	
2	9 26 59 72 52 29	
3	59	
4	72	
5	52	
6	29	
7	7	
8	1	

X 1. 5

X 2. 3

3. 4

X 4. 7

Q.4 The Mean deviation about Median for the given data.

52, 56, 66, 70, 75, 80, 82 is:

Ans	1 . 9	
Ans	2. 7	
7	(3. 3 (4. 6	
7	4. 6	

Q.5 For a random variable x, the central moments (μ_t) of all order exist. The square of $(2j+1)^{th}$ moment (μ_{2j+1}^2) is always:

Ans \times 1. More than $\mu_{2j}\mu_{2j+2}$

- ✓ 2. Less than or equal to $\mu_{2j}\mu_{2j+2}$
- \times 3. More than or equal to $\mu_{2j}\mu_{2j+2}$
- \times 4. Less than $\mu_{2j}\mu_{2j+2}$

Ans X 1. Continuous uniform distribution

- X 2. Normal distribution
- X 3. Gamma distribution
- 4. Exponential distribution

Ans

$$\times$$
 1. $\frac{N-1}{N-n}$

$$X$$
 2. $\sqrt{\frac{N-1}{N-n}}$

$$3. \sqrt{\frac{N-n}{N-1}}$$

$$\times$$
 4. $\frac{N-n}{N-1}$

Q.8 The Excess Kurtosis of the Geometric distribution with parameter p is:

Ans

$$\times$$
 1. 4 + $\frac{p^2}{1-p}$

$$\times$$
 2. 6 - $\frac{p^2}{1-p}$

$$\sqrt{3}$$
 3. 6 + $\frac{p^2}{1-p}$

$$\times$$
 4. 4 - $\frac{p^2}{1-p}$

Ans χ 1. Geometric distribution with parameter p

 \times 2. Bernoulli distribution with parameter p

Downloaded From :http://sscportal.in/ \checkmark 3. Binomial distribution with parameter n and pX 4. Bernoulli distribution with parameter np Q.10 Which one is parameter from population? X 1. \bar{X} **√** 2. σ X 3. S X 4. p **Q.11** For the given figures of production of a sugar factory, the estimate of the production for 1976 using straight line trend with origin at the year 1972 by the least squares method $(\Sigma x = 0, \Sigma x^2 = 28, \Sigma xy = 56)$ is: Year Production ('000 1970 1973 1975 Ans X 1. 88 X 2. 98 **3**. 96 X 4. 86 Q.12 Which of the following methods is NOT used in computation of a seasonal index for time series? Ans X 1. Method of averages X 2. Link relative method 3. Moving average method 4. Mathematical equations Q.13 The second and fourth moment about mean for a distribution are 4 and 18 respectively. What is the value of Pearson's coefficient of skewness β_2 ? Ans X 1. 0.875 √ 2. 1.125 X 3. 1.25 X 4. 4.5

Q.14		
	For the study purpose, the mean of the observations is 148 gm and standard deviation is 17.4	gm. Approximately, the
	coefficient of variation equals to:	
Ans	X 1. 11	
	× 2. 14	
	√ 3. 12	
	× 4. 13	
Q.15		
Q. 13	The variance of degenerate random variable is:	
Ans	√ 1. 0	
	X 2. c	
	X 3. 1	
	X 4. e ^{ct}	
0.46		
Q.16	Statistics is not applicable to observation.	
Ans	X ¹. classified	
	× 2. group	
	√ 3. individual	
	× 4. monotonic	
	The state of the s	
		10011280 mm W
Q.17	The mode (correct to two decimal places) for the give	ven data is:
	- 100 mm - 1	
	Class- Frequency	
	interval	
	0-10 6	
	10-20 9	
	20-30 8	
	30-40 14	
	40-50 28	
	· · · · · · · · · · · · · · · · · · ·	
	50-60 20	
	60-70 11	
	70-80 9	
Ans	× 1. 39.34	
	✓ 2. 46.36	
	2. 46.36	
	× 3. 28	
	✗ 3. 28	
	✗ 3. 28	
	✗ 3. 28	
	✗ 3. 28	
	X 3. 28X 4. 52.54	
Q.18	X 3. 28X 4. 52.54	ng?
Q.18 Ans	X 3. 28 X 4. 52.54 Which of the following is NOT a way of the sampling	ng?
	 X 3. 28 X 4. 52.54 Which of the following is NOT a way of the sampling X 1. Purposive sampling 	ng?
	 X 3. 28 X 4. 52.54 Which of the following is NOT a way of the sampling X 1. Purposive sampling 	ng?
	 X 3. 28 X 4. 52.54 Which of the following is NOT a way of the sampling X 1. Purposive sampling X 2. Simple random sampling 	ng?
	 X 3. 28 X 4. 52.54 Which of the following is NOT a way of the sampling X 1. Purposive sampling 	ng?
	 X 3. 28 X 4. 52.54 Which of the following is NOT a way of the sampling X 1. Purposive sampling X 2. Simple random sampling ✓ 3. Unsystematic sampling 	ng?
	 X 3. 28 X 4. 52.54 Which of the following is NOT a way of the sampling X 1. Purposive sampling X 2. Simple random sampling 	ng?
	 X 3. 28 X 4. 52.54 Which of the following is NOT a way of the sampling X 1. Purposive sampling X 2. Simple random sampling ✓ 3. Unsystematic sampling 	ng?
	 X 3. 28 X 4. 52.54 Which of the following is NOT a way of the sampling X 1. Purposive sampling X 2. Simple random sampling ✓ 3. Unsystematic sampling 	ng?
	 X 3. 28 X 4. 52.54 Which of the following is NOT a way of the sampling X 1. Purposive sampling X 2. Simple random sampling ✓ 3. Unsystematic sampling 	ng?

Ans	Five persons A, B, C, D and E occupy seats in a row at random. The probability that A and B sit next to each other is: 1. $\frac{1}{4}$ 2. $\frac{1}{2}$ 3. $\frac{2}{5}$ 4. $\frac{1}{3}$ A Poisson distribution has a double mode at $x = 1$ and $x = 2$. The probability for $x = 1$ or for $x = 2$ of these two values is: 1. $4e^{-2}$ 2. e^{-2} 3. $2e^{-2}$ 4. $3e^{-2}$
	4. 3e-2
Q.21 Ans	With reference to index numbers, which of the following statements is true? 1. Always have same value with different methods of construction 2. It is used for the base of planned economy. 3. International comparison is possible 4. Do not alter with better quality and/or obsolescence
Q.22 Ans	If a discrete random variable X follows uniform distribution and assumes only the values 8, 9, 11, 15, 18, 20, the value of $P(X-14 < 5)$ will be: 1. $\frac{1}{5}$ 2. $\frac{1}{4}$ 3. $\frac{1}{3}$ 4. $\frac{1}{2}$
Q.23 Ans	Marshall-Edgeworth Index number: ✓ 1. does not satisfy only circular test of consistency ✓ 2. does not satisfy both factor reversal test and circular test of consistency ✓ 3. satisfies factor reversal test and circular test of consistency ✓ 4. does not satisfy only factor reversal test
Q.24	The curve obtained by joining the points, whose x-coordinates are the upper limits of the class interval and y-coordinates are corresponding cumulative frequencies is called:

SSC CGL Tier-1 Printed Study Kit

- > 100% Syllabus Covered
- 12 Books, 1300+ Pages
- > 5600+ MCQs
- > 08 Year Solved Papers & Mock Tests (PDF Copy)
- 1 year Current Affairs (PDF Copy)

for Exam Help Call Us at: +91 8800734161

What you will get:

- 100% Syllabus Covered
- 12 Books
- 1300+ Pages
- 5600+ MCQs
- 8 Year Solved Papers (PDF Copy)
- Five Practice Papers (PDF Copy)
- One Year Current Affairs (PDF Copy)
- Guidance & Support from Our Experts

Price of the Kit: Rs. 6,000

Rs. 2,999/-

Net Banking

Order Online (100% Safe)

Click here for Other Payment Options (Cash/NEFT/etc)

FOR MORE DETAILS CLICK HERE

Ans X 1. Histogram ✓ 2. Ogive X 3. Frequency Polygon X 4. Pie curve **Q.25** The probability density function of a random variable X is $f(x) = \frac{\pi}{10} \sin \frac{\pi x}{5}$; $0 \le x \le 5$. The first quartile of X is: 🗙 1. $\frac{10}{}$ \times 4. $\frac{5}{2}$ Q.26 60% of the employees of a company are college graduates. Of these, 10% are in sales. Of the employees who did not graduate from college, 80% are in sales. The probability that an employee selected at random is in sales, is: Ans X 1. 0.46 **√** 2. 0.38 X 3. 0.62 X 4. 0.54 Q.27 By the method of moving averages, the seasonal index for four quarters equals to: Ans Average $-\times 100$ Grand Average \times 2. $\frac{Average}{Grand\ Average} \times 4$ \times 3. $\frac{Average}{Grand\ Average} \times 10$ X 4. Average
Grand Average **Q.28** If $r_{12} = +0.80$, $r_{13} = -0.40$ and $r_{23} = -0.56$, then the square of multiple correlation coefficient (correct to four decimal places) $R_{1,23}^2$ is equal to: Ans 🗸 1. 0.6434 X 2. 0.7586 X 3. -0.436 X 4. 0.8021 **Q.29** If the multiple correlation coefficient of X_1 on X_2 and X_3 is zero, then: Ans X 1. $r_{12} \neq 0, r_{13} = 0$ $x_{12} = 0, r_{13} \neq 0$ X 3. $r_{12} \neq 0, r_{13} \neq 0$

 \checkmark 4. $r_{12} = 0, r_{13} = 0$

		$\overline{}$

 $\mathbf{Q.30}$ The null hypothesis in ANOVA one-way classification, the study of the variances due to k different sources, is

- Ans X 1. H_0 : $\sigma_1 = \sigma_2 = \cdots = \sigma_k$

 - \times 2. H_0 : At least for one pair $\mu_i = \mu_j$; $i, j = 1, 2, ..., k, i \neq j$
 - \times 3. H_0 : At least for one pair $\sigma_i = \sigma_i$; $i, j = 1, 2, ..., k, i \neq j$
 - \checkmark 4. $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$

Q.31 The limits of multiple correlation coefficient $R_{1.23}$ are:

- Ans \times 1. -1 to 1
 - ✓ 2. 0 to 1
 - \times 3. -2 to 2
 - \times 4. -1 to 0

- Q.32 Second differencing in time series can help to eliminate which trend?
 - (I) Quadratic trend
 - (II) Linear trend

Ans X 1. Neither (I) nor (II)

- X 2. Both (I) and (II)
- X 4. Only (II)

Q.33 The probability of getting 9 cards of the same suit in one hand at a game of bridge is:

✓ 1.
$$\frac{\binom{13}{9} \times \binom{39}{4} \times 4}{\binom{52}{13}}$$

$$\times$$
 3. $\frac{\binom{13}{9} \times 4}{\binom{52}{13}}$

$$\times 4. \frac{\binom{13}{9} \times \binom{39}{4}}{\binom{52}{13}}$$

Q.34 Which of the following is NOT an approach for assigning the probability of the event?

X 1. Relative frequency approach

2. Personal approach

1		
	X 3. Classical approach	
	★ 4. Statistical approach	
	· · · · · · · · · · · · · · · · · · ·	
Q.35	A, B, and C are three mutually exclusive and exhaustive events associated with a random exp	periment. If $P(B) = \frac{3}{2}P(A)$
	and $P(C) = \frac{1}{2}P(B)$ then value of $P(A)$ is:	2
Ans	v 1	
	\times 1. $\frac{1}{13}$	
	\times 2. $\frac{2}{13}$	
	13	
	√ 3. $\frac{4}{13}$	
	13	
	\times 4. $\frac{3}{13}$	
	13	
0.36	If Laspeyres price index of a commodity is 208 and Passche's price index of the same com	modity is 52, the value of
	Fisher index number will be:	
Ans	₩ 104	
	× 2. 103	
	× 3. 105	
	★ 4. 102	
	and the state of t	100 100 100 100 100 100 100 100 100 100
Q.37	Tonowing two statements are related to regression	coefficient
	(I) Independent of the change of origin	
١.	(II) Independent of the change of scale	
Ans	1. Both (I) and (II) are correct	
	✓ 2. Only (I) is correct	
	X 3. Only (II) is correct	
	1 September 1 Sept	
	★ 4. Neither (I) nor (II) is correct	
Q.38	For the recorded observation, the coefficient of variation is 0.2 and the variance is 16.	. The arithmetic mean is:
Ans	× 1. 18	
	X 2. 16	
	√ 3. 20	
	× 4. 14	
	A 14	
Q.39		$(p); x = 0, 1, 2, \dots$ is equal
Ans	to:	
1	$\checkmark 1. \frac{e^{-\lambda}\lambda^x}{x!}, x = 0, 1, 2, \dots$	
	× 2. Limit does not exist	
	X 3. 0	
	× 4. 1	
1		

Q.40 The given table shows ANOVA two-way classification to test two types of cloths in fashion trends.

Source of	SS	df	MSS	F-Ratio
Variations				
Varieties A	280	2	140	42.04
Varieties B	α	3		γ
Error	20	β	3.33	
Total	640	11		

The respective values (correct to two decimal places) of (α, β, γ) are:

- **1**. (340, 6, 34.03)
- X 2. (240, 6, 34.03)
- X 3. (340, 6, 113.03)
- X 4. (240, 6, 113.03)

Q.41 The arithmetic mean of marks of the students for the given data is:

Marks	No. of
	students
0-10	12
10-20	18
20-30	27
30-40	20
40-50	17
50-60	6

- Ans X 1. 38
 - X 2. 48
 - X 3. 18

Q.42 The approximate median of the Poisson distribution with parameter λ is:

- χ 1. $\lambda + \frac{1}{3} + \frac{1}{50\lambda}$
- χ 2. $\sqrt{\lambda + \frac{1}{3} \frac{1}{50\lambda}}$
- $\sqrt{3}$ 3. $\lambda + \frac{1}{3} \frac{1}{50\lambda}$
- $\times 4. \lambda + \frac{1}{3} + \sqrt{\frac{1}{50\lambda}}$

Q.43 If $X_1, X_2, ..., X_n$ is a simple random sample without replacement of size n from a finite population of N units with mean μ and variance σ^2 , the covariance of (X_i, X_j) will be:

Ans

Downloaded From : http://sscportal.in/ ${f Q.44}$ Which of the following approaches does multiplicative model have for the component of Time series Secular trend (T), X 1. $T \times S \times C + I$ \times 2. $T + S \times C \times I$ ✓3. T×S×C×I \times 4. $T \times S + C \times I$ Q.45 Let x and y be two variables with variance as 1990 and 796 with 11 and 9 number of observations respectively. The value of F(10, 8) at 5% level of significance is: X 1. 2.1 V 2. 2.5 **Q.46** If Arithmetic mean and coefficient of variation of x are 10 and 40 respectively, then the variance of y = 10-2x is: Ans X 1. 32 **2**. 64 X 3. 22 X 4. 16 Q.47 Let MSA defines mean sum of squares due to factor A and MSE defines mean sum of squares due to error. If the null hypothesis of ANOVA for one way classification is not true, then $\frac{E(MSA)}{E(MSE)}$ is: Ans \times 1. equal to -1✓ 2. more than 1 X 3. equal to 1 X 4. less than 1 Q.48 As per the given data, Laspeyres price index for the year 2006 is: Commodities Quantities Price per unit 2005 2006 2005 2006 5 2.0 2.5 A 6 2.5 3.0 3 2.5 3.0 Ans X 1. 121.36 X 2. 101.36 **√** 3. 111.36 X 4. 100.36

Q.49 If Z_1, Z_2, \dots, Z_n are n independent standard normal variates, then $\sum_{i=1}^n Z_i^2$ will follow:

Ans \times 1. chi-squared distribution with degree of freedom 2n

 \times 2. F distribution with degree of freedom (n, n)

 \checkmark 3. chi-squared distribution with degree of freedom n

 \times 4. t distribution with degree of freedom n

$\overline{}$

Q.50 The coefficient of correlation is r between X and Y having standard deviation σ_X and σ_Y . The tangent of the angle

$$x 1. \frac{1-r^2}{r}$$

$$\times$$
 2. $\frac{1-r^2}{r}\sigma_X\sigma_Y$

$$\times$$
 3. $\frac{1-r^2}{r} \frac{\sigma_X \sigma_Y}{\sigma_{Y} \cdot \sigma_{Y}}$

$$\begin{array}{c} X \text{ 3. } \frac{1-r^2}{r} \frac{\sigma_X \sigma_Y}{\sigma_{X+} \sigma_Y} \\ \checkmark \text{ 4. } \frac{1-r^2}{r} \frac{\sigma_X \sigma_Y}{\sigma_X^2 + \sigma_Y^2} \end{array}$$

Q.51 The incomes of the employees in a state is assumed to be normally distributed with mean ₹15,000 and variance ₹900. The median of the distribution of the income is:

Ans

√ 2. ₹15,000

Q.52 For a normal distribution, which of the following is true?

Ans
$$\times$$
 1. $mean \neq median = mode$

 $^{\mathbf{Q.53}}$ The mode of a geometric distribution with parameter p is:

$$X = \frac{1}{p}$$

$$\times$$
 3. $\left[-\frac{1}{\log_2(1-p)}\right]$

$$X = \frac{2-p}{\sqrt{1-p}}$$

Q.54 Let M, M_d, M_0 denote mean, median and mode and Q_1, Q_2 and Q_3 quartile points. Which of the following is an

Ans
$$X$$
 1. $S_k = M + M_0$

$$X$$
 2. $S_k = M + M_d$

कर्मचारी चयन आयोग (CGL) परीक्षा अध्ययन सामग्री

- > 100% Syllabus Covered
- 4 Books, 900+ Pages
- > 2500+ MCQs
- > 08 Year Solved Papers & Mock Tests (PDF Copy)
- 1 year Current Affairs (PDF Copy)

₹4,200/-₹**2,100**/-

for Exam Help Call Us at: +91 8800734161

आप क्या प्राप्त करेंगे?

- माध्यमः हिन्दी
- 100% पाठयक्रम
- कुल 4 पुस्तिकार्ये, 900 से अधिक पृष्ठ
- 2,500 से अधिक वस्तुनिष्ठ प्रश्न (MCQ)
- 8 Year Solved Papers (PDF Copy)
- Five Practice Papers (PDF Copy)
- हमारे विशेषज्ञों द्वारा मार्गदर्शन और सहायता

Price of the Kit: Rs. 4,200

Rs. 2,100/-

(Limited time Offer)

Order Online (100% Safe)

Click here for Other Payment Options (Cash/NEFT/etc)

FOR MORE DETAILS CLICK HERE

- X 3. $S_k = (Q_3 M_d) + (M_d Q_1)$
- \checkmark 4. $S_k = \frac{[(Q_3 M_d) (M_d Q_1)]}{Q_3 Q_1}$
- **Q.55** The second quartile for the following data 38, 39, 40, 52, 59, 67, 73, 77, 149, 248 is:

Ans X 1. 61

- **√** 2. 63
- X 3. 62
- X 4. 64
- Q.56 With reference to analysis of variance, which of the following statements is/are correct?
 - (I) Change of origin will affect the value of F.
 - (II) Change of scale will affect the value of F.

Ans X 1. Neither (I) nor (II)

- √ 2. Only (I)
- X 3. Only (II)
- X 4. Both (I) and (II)

Q.57 Which of the following is a sources of primary data?

Ans X 1. Reports of committees and commissions

- ✓ 2. Information from correspondents
- ★ 3. Newspapers and magazines
- X 4. Official publications of central and state government

Q.58 For a distribution with mean, median, mode and standard deviation 25, 24, 26 and 5 respectively, Karl Pearson's coefficient of skewness equals to:

Ans ✓ 1. -0.20

- X 2. 0.20
- X 3. 1
- **X** 4. −1

Q.59 The product of partial regression coefficient $b_{12.3}b_{23.1}b_{31.2}$ equals to:

Ans $r_{12.3} + r_{23.1} + r_{31.2}$

- \times 2. $(r_{12.3}r_{23.1}r_{31.2})^{\frac{1}{2}}$
- \times 3. $\frac{1}{r_{12,3}} + \frac{1}{r_{23,1}} + \frac{1}{r_{31,2}}$
- \checkmark 4. $r_{12.3}r_{23.1}r_{31.2}$

Q.60	If $x_i f_i,i=1,2,n$ is a frequency distribution with standard deviation 15 and mean 30, the cobe equal to:	efficient of variation will
Ans		
	× 2. 200	
	★ 3. 0.5	
	√ 4. 50	
Q.61	At a reservation counter, passengers are arriving for booking the tickets in a Poisson fashion with The kurtosis of the inter-arrival times of the passengers is:	ith mean rate 60 per hour.
Ans	1	
	× 2. 0.1	
	× 3. 60	
	√ 4. 6	
Q.62	Completely randomised design is based on the principles of and r	randomisation only.
Ans	★ 1. Divisibility	
	✓ 2. Replication	
	X 3. Local Control	
	★ 4. Compounding	
Q.63	If $\sum p_0q_0=160$, $\sum p_0q_1=250$, $\sum p_1q_0=200$ and $\sum p_1q_1=288$, then Fisher ideal in	dex number is equal to:
Ans	123	
	× 2. 115.2	
	× 3. 119.02	
	√ 4. 120	
Q.64 Ans	compared, remainded 2 to gar provides imministrative or wegater	of freedom for the:
AllS	Observations	
	✓ 2. Error sum of squares	
	× 3. Calculations	
	X ₄ Experiment	
Q.65	At a round table, n persons are seated on n chairs. The probability that two friends from same n each other, is:	college are sitting next to
Ans	\times 1. $\frac{2}{n}$	
	\times 2. $\frac{1}{n-1}$	
	\times 3. $\frac{1}{n}$	
	$\frac{n}{n}$	

	2
4 .	21-1

- 1

If $p(x) = \begin{cases} \frac{x}{15}; x = 1,2,3,4,5 \\ 0; \text{ elsewhere} \end{cases}$, the probability $P\left\{\frac{1}{2} < X < \frac{5}{2}\right\}$ is equal to:

 $\textbf{Q.67} \quad \text{The first four moments of a distribution about the origin are } -1.5, 17, -30 \text{ and } 108. \text{ The third moment about the meanth of the first four moments} \\$

- Ans 🗸 1. 39.75
 - × 2. 41.75
 - X 3. 40.75

X 4. 42.75

Q.68 Let $M_1, M_2, M_3, Q_1, Q_2, Q_3$ be the mean, median, mode and quartile points for different data points. Skewness is negative

- Ans $\sqrt{1.} Q_3 + Q_1 > 2M_d$
 - \times 2. $Q_3 + Q_1 > M_d$
 - \times 3. $M > M_0$
 - \times 4. $M > M_d$

		٦
		н
		н
		н
		н
		н
		н
		н
		н

Q.69 A dice was thrown 400 times and 'six' resulted 80 times. The data is used to justify the hypothesis of an unbiased dice at 95% confidence. With reference to the given case, which of the following statements is correct?

- Ans \times 1. H_0 is rejected.
 - X 2. The test statistic value is 0.0186.
 - \checkmark 3. H_0 is accepted.
 - \times 4. The standard error of p is 1.77.

 $\textbf{Q.70} \quad \text{The sample sizes for two cases were } 15 \text{ each with means as } 104 \text{ and } 114 \text{ respectively and variances as } 290 \text{ and } 510 \text{ and } 100 \text{ and } 100$

Let the null hypothesis is that the two population means are equal, then the value of t-statistic is:

Ans 1. 0.097

- X 2. 0.97
- X 3. 0.079
- X 4. 0.79

Q.71 The variation among the observations of each specific class is known as: Ans X 1. total number of classes X 2. variability between classes X 3. random cause 4. variability within classes **Q.72** If $n_1=10$ and $n_2=5$ are the sizes, $\bar{x}_1=7$ and $\bar{x}_2=4$ are the means and $\sigma_1=1$ and $\sigma_2=1$ are the standard deviations of two series of data. If combined mean $\bar{x}=6$, then the variance of the combined series with size n_1+n_2 is equal to: Ans 🗸 1. 3 X 2. 1 X 3. 2 X 4. 9 Q.73 The empirical relation between mean (M), median (M_d) , and mode (M_0) is: Ans $\sqrt{1}$ $M_0 = 3M_d - 2M$ $X = 2M_d - 3M$ X 3. $M_0 = 2M_d + 3M$ \times 4. $M_0 = 3M_d + 2M$ Q.74 X and Y are independent normal variables with mean 50 and 80 respectively and standard deviation as 4 and 3 respectively. What is the distribution of X + Y? Ans X 1. N(130, 7) X 2. N(130, 3) √ 3. N(130, 5) X 4. N(130, 4) Q.75 The coefficient of correlation is the _____ of coefficients of regression. Ans X 1. reciprocal of product X 2. arithmetic mean √ 3. geometric mean X 4. harmonic mean Q.76 Which of the following satisfies the time and factor reversal test? Ans X 1. Laspeyres index × 2. averaging the unweighted price relatives X 3. Passche's index √ 4. Fisher ideal index

Q.77	For a distribution, mean is 40, median is 40.5 and mode is 41. The distribution is:
Ans	✓ 1. negatively skewed
	× 2. normal
	X 3. positively skewed X 3. positively skewed
	X 4. mesokurtic
Q.78	The following observations 14, 19, 17, 20, 25 constitute a random sample from an unknown population with mean μ
	and standard deviation σ . The point estimation of population mean is:
Ans	X 1. 17
	X 2. 20
	✓ 3. 19 × 4. 18
	* 18
Q.79	The many desiration from an arrange A will be minimum if A many attention
Ans	The mean deviation from an average A will be minimum, if A represents: •• 1. Median
	× 2. Harmonic mean
	× 3. Mode
	× 4. Arithmetic mean
	Artumete mean
Q.80	A man pedals cycle from his house to his office at a speed of 10 km/h and back from the office to his house at a speed of
Ans	15 km/h. His average speed (in km/h) is: 1. 12.5
	× 2. 12.8
	✓ 3. 12
	× 4. 13
Q.81	For a distribution, the mean is 10, variance is 16, γ_1 is +1 and β_2 is 4. The distribution is:
Ans	✓ 1. leptokurtic
	× 2. platykurtic
	× 3. normal
	× 4 mesokurtic
Q.82	The problem of statistics is given in two sections of same standard. The odds against for section X to solve the problem
	are $4:3$ and odds in favour to section Y for solving the same problem are $7:8$. The probability that neither section solves the problem of statistics, if both sections try independent of each other, is:
Ans	\times 1. $\frac{21}{105}$
	\checkmark 2. $\frac{32}{105}$
	× 3. 84 105
	105

 \times 4. $\frac{73}{105}$

Q.83 If the marks obtained by 500 candidates in statistics paper is given below, then the lower quartile mark is:

Marks more	No. of Candidates
than	Calididates
0	500
10	460
20	400
30	200
40	100
50	30

- Ans 🗸 1. 21.25
 - X 2. 300
 - X 3. 125
 - X 4. 20.25

Q.84 $\mu'_{(r)}$ and μ'_r represent the factorial moment of order r about the origin and r^{th} moment about the origin of the distribution $x_i|f_i, i=1,2,\dots n$. The value of μ_2' equals to:

- Ans $\chi_{1. \mu'_{(1)}}^{2}$
 - \times 2. $\mu'_{(2)} \mu'_{(1)}$
 - \checkmark 3. $\mu'_{(2)} + \mu'_{(1)}$
 - X 4. \(\mu'_{(2)}\)

Q.85 For making frequency distribution, the number of classes used depends upon:

- Ans X 1. size of responses
 - X 2. experiment condition
 - √ 3. size of class
 - X 4. number of observation

Q.86 If the independent random variables X,Y are Binomially distributed with $n=3,p=\frac{1}{3}$ and $n=5,p=\frac{1}{3}$ respectively, then the probability of $(X + Y \ge 1)$ is:

- \times 1. $1 \left(\frac{2}{3}\right)^6$
- \times 2. $1 \left(\frac{1}{3}\right)^8$
- $\sqrt{3}$ 3. $1 \left(\frac{2}{3}\right)^8$
- \times 4. $1 \left(\frac{1}{3}\right)^6$

Q.87 With which characteristic movement of a time series would you associate increasing demand of smaller automobiles?

√ 1. Secular trend

X 2. Cyclical fluctuation

Downloaded	d From :http://sscportal.in/
	X 3. Regular movement
	× 4. Seasonal variation
	Q.88 For the discrete distribution, the Pearson's coefficient of skewness β_2 is always:
	· · · p ₂ · · ·
	$ \begin{array}{c} \times 2. \ \beta_2 = 1 \\ \times 2. \ \beta_2 = 1 \end{array} $
	\times 3. $\beta_2 < -1$
	\checkmark 4. $\beta_2 > 1$
	Q.89 The square of normal variate with mean 0 and variance 1 follows:
	Ans \times 1. Beta distribution with $\alpha = 0$ and $\beta = 1$
	× 2. Student's t-distribution with mean 0 and variance 1
	3. Normal distribution with mean 0 and variance 1
	✓ 4. Chi-squared distribution with degree of freedom 1
	Q.90 Approximately, the coefficient of variation for the given data where Pearson's second measure of skewness = 0.42, arithmetic mean = 86 and median = 80, is:
	Ans X 1. 53
	× 2. 51
	3. 50
	X 4. 52
	Q.91 In one way ANOVA, σ^2 is estimated by:
	Ans 1. mean square within groups
	\times 2. s^2
	→ 3. sum of squares between groups
	★ 4. mean square between groups
	Q.92 If ten coins are tossed simultaneously, then the probability of getting at most 1 head is:
	Ans \times 1. $\frac{1}{1024}$
	\times 2. $\frac{2}{1024}$
	3. 11/1024
	\times 4. $\frac{10}{1024}$

Q.93 Which of the following is NOT a type of data classification? Ans X 1. Qualitative classification X 2. Chronological classification X 3. Geographical classification 4. Mathematical classification **Q.94** If the occurrence of events follows Poisson Process with mean rate λ , then inter-occurrence time of events will follow Ans X 1. Geometric distribution X 2. Poisson distribution 3. Exponential distribution X 4. Gamma distribution Q.95 A random sample of 100 ball bearings selected from a shipment of 2000 ball bearing has an average diameter of 0.354 inches with standard deviation 0.048 inches. The 95% confidence interval for the average diameter of these 2000 ball Ans \times 1. 0.354 ± 1.96 × 0.048 \checkmark 2. $0.354 \pm 1.96 \times 0.0047$ \times 3. 0.354 \pm 0.048 \times 4. 0.048 ± 1.96 × 0.354 Q.96 The median for the given frequency distribution is: 8 10 11 16 20 25 15 Ans X 1. 20 **2**. 5 X 3. 4 X 4. 65 **Q.97** In Spearman rank correlation coefficient $r_s = 1 - \frac{6\sum d^2}{n(n^2-1)}$, the maximum value of $\sum d^2$ in case of untied ranks is: Ans \times 1. $\frac{1}{2}(n^2-1)$ \times 2. $\frac{1}{4}n(n^2-1)$ \checkmark 4. $\frac{1}{3}n(n^2-1)$

			number of pairs	(X,Y) is n , then t	he Karl Pearson's	coefficient of correlation	n is:	
Ans	\times 1. $\frac{n\Sigma}{\sqrt{\Sigma}x^2}$	xy						
	\times 2. $\frac{\sum_{x}^{2}}{(\sum_{x}x^{2})^{2}}$	<u>1</u>						
	$(\sum x^2)$	$(y^2)\overline{n}$						
	\checkmark 3. $\frac{\sum x}{\sqrt{\sum x^2}}$	y						
	\times 4. $\frac{\sum x}{n\sum x^2}$	y						
	$n\sum x^2$	$\sum y^2$						
2.99	For a group of 100 str	idents, the mean a	ınd standard dev	iation of scores we	ere found to be 30	and 5 respectively. Late	r on	
Ans			1 53 were misrea	d as 43 and 35 res	pectively. The co.	rrected mean equals to:		
4115	1. 30.09							
	× 2. 30.01							
	× 3. 30.41							
	X 4. 30.05	5						
	X 4. 30.05	5						
	X 4. 30.05	5						
	X 4. 30.03	5						
.100			king of ten si	tudents in two	subjects matl	nematics and statist	cs.	
.100	The given table	shows the rank	king of ten s	tudents in two	subjects matl	nematics and statisti	cs.	
100			king of ten st	tudents in two	subjects math	nematics and statisti	cs.	
100	The given table : Mathematics 3 5	Shows the rank	king of ten si	tudents in two	subjects matl	nematics and statisti	es.	
100	The given table : Mathematics 3 5 8 4	Shows the ranl Statistics 6 4 9 8	king of ten st	tudents in two	subjects math	nematics and statisti	cs.	
100	The given table : Mathematics 3 5 8 4 7	Shows the rank Statistics 6 4 9 8	king of ten st	tudents in two	subjects matl	nematics and statisti	cs.	
100	The given table: Mathematics 3 5 8 4 7 10 2	Statistics 6 4 9 8 1 2 3	king of ten si	tudents in two	subjects matl	nematics and statisti	es.	
100	The given table : Mathematics 3 5 8 4 7 10	Statistics 6 4 9 8 1	king of ten st	tudents in two	subjects math	nematics and statisti	cs.	
100	Mathematics 3 5 8 4 7 10 2 1 6 6 9	Statistics 6 4 9 8 1 2 3 10 5 7		tudents in two	subjects matl	nematics and statisti	cs.	
	The given table : Mathematics 3 5 8 4 7 10 2 1 6 9 The coefficient of	Shows the rank Statistics 6 4 9 8 1 2 3 10 5 7 f rank correla		tudents in two	subjects matl	nematics and statisti	cs.	
	The given table:	Shows the rank Statistics 6 4 9 8 1 2 3 10 5 7 f rank correla		tudents in two	subjects math	nematics and statisti	cs.	
	The given table : Mathematics 3 5 8 4 7 10 2 1 6 6 9 The coefficient of 1 −0.3 ★ 2 −0.1	Shows the rank Statistics 6 4 9 8 1 2 3 10 5 7 f rank correla		tudents in two	subjects math	nematics and statisti	cs.	
	The given table : Mathematics 3 5 8 4 7 10 2 1 6 9 The coefficient of 2 2 -0.1	Shows the rank Statistics 6 4 9 8 1 2 3 10 5 7 f rank correla		tudents in two	subjects matl	nematics and statisti	cs.	
	The given table : Mathematics 3 5 8 4 7 10 2 1 6 6 9 The coefficient of 1 −0.3 ★ 2 −0.1	Shows the rank Statistics 6 4 9 8 1 2 3 10 5 7 f rank correla		tudents in two	subjects math	nematics and statisti	cs.	
t.100	The given table : Mathematics 3 5 8 4 7 10 2 1 6 9 The coefficient of 2 2 -0.1	Shows the rank Statistics 6 4 9 8 1 2 3 10 5 7 f rank correla		tudents in two	subjects math	nematics and statistic	cs.	
	The given table : Mathematics 3 5 8 4 7 10 2 1 6 9 The coefficient of 2 2 -0.1	Shows the rank Statistics 6 4 9 8 1 2 3 10 5 7 f rank correla		tudents in two	subjects matl	nematics and statistic	cs.	

SSC EXAMS PRINTED STUDY NOTES

		1
Study Material for SSC CGL (Tier-1) Examination	English	CLICK HERE
Study Kit for SSC CGL (Tier-2) Exam	English	CLICK HERE
Study Kit for SSC CHSL (10+2) Examination	English	CLICK HERE
Study Kit for SSC Stenographers (Grade 'C' & 'D')	<u>English</u>	CLICK HERE
Study Kit for Multitasking (Non-Technical) - MTS	<u>English</u>	CLICK HERE
Study Kit for SSC Constables (GD) Exam	<u>English</u>	CLICK HERE
Study Kit For SSC Sub-Inspectors in Delhi Police, CAPFs, CISF	<u>English</u>	CLICK HERE
Study Kit for SSC Junior Engineer Exam (Paper-1)	<u>English</u>	CLICK HERE
IAS EXAMS STUDY MATERIALS	8	
Study Kit for IAS (Pre) GENERAL STUDIES Paper-1 (GS)	English	CLICK HERE
Study Kit for IAS (Pre) CSAT Paper-2(Aptitude)	English	CLICK HERE
सामान्य अध्ययन (GS) प्रारंभिक परीक्षा (Pre) पेपर-1	हिन्दी	CLICK HERE
आई. ए. एस. (सी-सैट) प्रांरभिक परीक्षा पेपर -2	हिन्दी	CLICK HERE
Gist of NCERT Study Kit For UPSC Exams	English	CLICK HERE
युपीएससी परीक्षा के लिए एनसीईआरटी अध्ययन सामग्री	हिन्दी	CLICK HERE